
Yes, that's right! It's... The Kool Krack Tootoriul

by smeger

version 1.1 November 9, 1996

but wait, now how much would you pay?

operators are standing by

(best results will come from viewing this file in BBEdit with Monaco 9pt)

Who's It For?

This tutorial is for people who have no idea how to crack programs and have no
idea how to program anything. It contains a description of the assembly
language commands usually used to crack, a description of the software tools
used to crack, and an illustration of the technique of cracking. The
illustrative technique gives an example of cracking a program that displays an
annoying "Register Me" message and requests a registration code. However, the
information given should be extensible to any cracking situation. This
tutorial should give a novice enough information to crack a program of average
difficulty.

Within this tutorial, my definition of kracking is "changing the executable
code of a program in order to change the behavior of the program."

The examples given in this tutorial are aimed at cracking application
programs, but with the information given, it should be extendable to cracking
any sort of computer software (i.e. startup extensions, control panels, etc.).

What Do You Need?

'Kay, you need some "can't live without" tools to crack any program. You'll
need MacsBug, ResEdit, and (optionally, but recommended) the Code Editor for
ResEdit. All of these can be found on the net; the Code Editor may be kinda
tough to find, and some versions of SuperResEdit have it built in. The
documentation that comes with all of these tells you how to install 'em.

Oh, and if you're like me, you'll also need a pencil and *lots* of paper.

MacsBug is a dissambler that lets you stop program execution at any time, at
particular times, change anything in RAM, manipulate your computer's
registers, alter program execution, cook toast, and lots of other good stuff.
Much, much more on it later.

ResEdit is a resource editor. On the Smacintosh, files have two 'forks,' a
data fork (for data) and a resource fork (for resources, duh). The data fork
contains whatever the guy that wrote the program wants, while the resource
fork contains 'chunks' of behaviors, styles, icons, cursors, fonts, or
whatever. With ResEdit, you can easily change icons, fonts, cursors, the
appearance of dialog windows, the appearance of alerts, patterns, or *EVEN*
the code itself (Note: not on PowerSmac native apps).

Resources are specified by both a four character 'type' and a numerical ID.
For example, the first code segment an application ever loads is specified by
CODE ID 0. Here are some common types of resources: CODE
executable code for applications cdev
executable code for control panels INIT
executable code for extensions that run at startup CDEF
executable code that defines how a control (button, scroll bar, etc) behaves
LDEF
executable code that defines how a graphical list of some sort behaves MDEF
executable code that defines how a menu behaves. WDEF
executable code that defines how a window behaves crsr
a color cursor CURS
a black & white cursor cicn
a color icon ICON
a black and white icon icl4
a 4 bit/pixel large color icon icl8
an 8 bit/pixel large color icon ICN#
a black & white large color icon ics4
a 4 bit/pixel small color icon ics8
an 8 bit/pixel small color icon ics#
a black & white small icon ppat
a color pattern ppt#
a collection of color patterns PAT#
a collection of black & white patterns sicn
a very small black & white icon snd
a sound STR
a string (collection of letters or numbers - a sentence) STR#
a collection of strings ALRT
a description of an alert window's placement & contents DLOG
a description of a dialog window's placement & contents MENU
a description of a menu's contents WIND
a description of a window's placement

This list is by no means comprehensive. Also, anything can be found in any
kind of resource, if the guy that wrote the program is weird.

ResEdit allows you to edit any resource. When you open a file with ResEdit,
you see a window containing a bunch of resource types. Double clicking on a
resource type will show you another window containing all the resource IDs of

that type. Double clicking an ID will allow you to edit the resource with the
selected type and ID. The editor window is different for different resource
types. For example, when editing icons, cursors, or patterns, the window
shows the resource graphically and contains rudimentary graphical
editing/manipulation tools. When editing executable code, the window shows
the hexadecimal version and the ascii version of the resource. When editing
window descriptions, the editor shows a graphical version of the window. When
ResEdit does not recognize the resource type, it reverts to the default
hex/ascii view used by executable code resources.

Raw hex/ascii is not incredible useful unless you are a computer. A much
nicer way of looking at executable code is in assembly language. The
CodeEditor extension allows you to view resources in assembly within ResEdit.
Whenever you edit a CODE, cdev, INIT, CDEF, MDEF or WDEF resource, instead of
giving you raw hex and ascii, it dissassembles into assembly, lets you search
for references to code snippits; basically, it's really cool.

If you have the CodeEditor extension, you can add additional resource types
that it will edit. From ResEdit, open your ResEdit Preferences file (found in
SystemFolder:Preferences) and add RMAP resources. If you've already installed
CodeEditor, you can just check out any of the resources it edits (except CODE)
to see how it's done.

**Programming Languages You'll Be Working With,

 and Ones You Won't**
(nice titles, huh...)

There are a few different types of language that you'll be dealing with here.
There is assembly, which is a mnemonic language in which every instruction
directly corresponds to something that your computer will do. There is
machine language, which is the numerical equivalent of assembly language, and
there are high level languages, which you won't have to deal with unless
you're lucky enough to have the source code of the software you want to crack.
Assembly language looks something like:

BNE.S MYGETRESOURCE+00652

Machine language (for the same instruction) looks like:

6664

High level (for a different set of instructions) looks like:

if ((iAmKool && uAreNot) || (!iAmKool && uMightBe)) SomeonesKool();

The Toolbox Traps & MacsBug

All right, all I'm gonna cover is cracking programs that disable stuff or nag
'til you type in a registration code. Figuring out how to generate serial
numbers is a lot tougher, 'cause you need a detailed knowledge of assembly.

Usually, you use the Macintosh Toolbox Traps to find out what's going on. The
Toolbox is a set of routines that Smac programmers can use to simplify common
tasks, making writing code really simple 'cause you don't have to do anything.

A trap is a system routine that performs some sort of action, such as drawing
a menu bar or a window. Traps are stored within a program as a single
instruction. When the trap is called, the program will perform the trap, then
continue execution normally.

I'm going to cover the basic traps, but if you need a complete reference to
all 5000+, you could check Apple's web site, follow the links to Developer
pages, and get all the Inside Smacintosh books. You'll pretty much have to
devote a hard drive to storing 'em on, but for basic cracking, you don't need
'em.

Here are some example program situations and the traps associated with them.
These are *not* all associated with the nagging registration program. If the
program puts up a window in which you have to click ok or cancel or whatever
before you can do anything else, the odds are good that the trap used to
create the window is GetNewDialog. The software will probably use the
ModalDialog trap to automate handling events like mouse clicks and key hits.
If the program is trying to get keystrokes at a weird time (like at system
startup), it may use GetKeys. Close to the beginning of most application
programs, the InitGraf trap will be called (this initializes some drawing
variables). If the program puts up a window to tell you something while some
other program is in the foreground (this is called a notification), it
probably uses NMInstall. Programs have a main event loop that processes all

the mouse clicks, key strokes, etc. This loop will usually call
WaitNextEvent, or, if it was written in 1910 (B.C.!), it may use GetNextEvent.
To handle a menu selection, it will probably use MenuSelect.

'Kay, enough of this. If I haven't covered it, check Inside Smacintosh. Your
trap will probably be in either Essential Toolbox or More Essential Toolbox.
Check the chapter that seems relevant.

Allrighty, for our purposes we're going to assume that you want to crack a
registration code, and the program puts up a window with Name, Organization,
and Serial Number text boxes, has an Okay Button, and a Cancel button. Here's
the basic strategy. You want to check out the code after you've filled in the
three text fields and hit enter. You want to find where it determines whether
your entry is valid, and make the program think that any entry is a valid one.

Now, you need to know a bit about MacsBug. MacsBug is a debugger for the
Smacintosh; it allows you to examine code, memory, and even change things.
Smac User Warning: MacsBug is *not* a pretty program. It takes over the
entire screen. The majority of the screen displays whatever you tell it to
(the main display area). At the bottom of the screen, it shows the next three
assembly language instructions to be executed. At the very bottom of the
screen is one line (the command line) where you can type commands. On the
left side of the screen it displays (from top to bottom) the contents of your
computer's stack, the name of the current running process, some environmental
information, the state of the status register, the state of the eight data
registers, and the state of the eight address registers.

You can do some pretty cool stuff with MacsBug, and if I don't cover it here,
try typing ? on the command line for very good on-line help. The most
important thing you can do is set a break point so that the program you are
running will pause and you will drop into MacsBug on whatever toolbox trap you
specify. This is an A-Trap Break. It uses the command atb <the trap name>.
So, if you wanted to halt execution everytime the ModalDialog trap was found,
you would use "atb modaldialog" (MacsBug is generally not case sensitive).
You can clear an individual a-trap break using atc (a-trap clear). You can
either use atc <the trap name> for an individual trap or atc to clear 'em all.
By the way, using atb without a trap name will break on all traps, which I
don't recommend unless you are clinically insane or chronically patient.

Anyway, at the bottom of the MacsBug screen, you will see a listing of
(usually) 3 instructions. The current instruction is at the top, followed by
the next two. The offset from the beginning of the procedure or resource in
which the instruction resides is at the left, followed by the address in
memory of the instruction, followed by the instructions mnemonic (the assembly
language version), followed by the instructions arguments if any. On the
right is the machine language version of the instruction. The machine
language is in hexadecimal, and is what you would see if you opened a CODE
resource in ResEdit without the CodeEditor. At the top of this listing is the
name of the resource in which the code lives, or the name of the procedure.
Finally, there may be more info following a semicolon. For example, if I go
into MacsBug now, I get this listing at the bottom of the screen:

_SetResFileAttrs

; Will Loop
+006E2
4081B6DA
*DBEQ
D5,_SetResFileAttrs+006DE
; 4081B6D6
|57CD FFFA
+00636
4081B6DE
 BEQ.S
_SetResFileAttrs+006FE

; 4081B6F6
|6716
+006E8
4081B6E0
 BRA.S
_SetResFileAttrs+00704

; 4081B6FC
|601A

The name of the procedure (in this case, it's a toolbox trap) is
SetResFileAttrs. The +006e2 is the offset from the beginning of the
procedure. This instruction is 6E2 hexadicimal bytes from the beginning of the
SetResFileAttrs trap. The 4081b6da is the actual address in memory of this
instruction. DBEQ is the mnemonic of the instruction.
D5,__SetResFileAttrs+006de is the instruction parameters. This instruction is
used for looping. ;4081b6d6 tells what address it will go to if it loops.
57cd fffa is the machine language version of the instruction. The * in front
of the mnemonic shows that it will be the next instruction to be executed.
The Will Loop on the top line indicates that the instruction is going to loop.
All instructions that conditionally jump elsewhere in memory will have
something like this.

The next instruction shown is 636 hexadicimal bytes from the beginning of the
SetResFileAttrs trap. It is located at address 4081B6DE in memory. It's
mnemonic is BEQ.S. The paramters are _SetResFileAttrs+006FE. This
instruction is a "Branch if Equal" (more later). If it branches, it will
branch to 4081B6F6. It's machine language equivalent is 6716.

Aside - Ya Gotta Know Some Assembly Language

Using MacsBug is sort of pointless without at least a meager knowledge of
assembly language. So, following are some of the assembly language commands
important to cracking and finding your way around a program.

Bcc Instruction
Programs utilize conditional branches. This can be illustrative in a high
level way by something like "if this is true go here, otherwise go over here."
In assembly language, this is done with the mnemonic Bcc, where cc specifies
what condition the statement will test. Some examples are BEQ (Branch if
Equal), BNE (Branch if Not Equal), BGE (Branch if Greater than or Equal), BLE
(Branch if Less than or Equal), BGT (Branch if Greater Than), and BLT (Branch
if Less Than). There are a few more, but they aren't common. If a branch
statement's condition is satisfied, the next instruction to be executed will
be the instruction located at the address specified by this branch
instruction's parameters, instead of being the next instruction in memory.

The various branch instructions test bits in the Status Register (SR - found
in the middle of the left side of MacsBug). The bits tested depend on the
branch instruction used. These bits are set by the instructions proceeding
the branch instruction (more later). The state of the bits themselves is
generally not relevant to kracking stuff.

A conditional branch's mnemonic will always begin with a B and the machine
language equivalent will always begin with a 6.

You will probably want to change branch behavior. If a branch is going to
branch, you may want to see what happens if it doesn't. Often, this is all it
takes to crack a program; *finding the right branch is the tough part*. If
this is the current line in MacsBug:

_DeQueue

; Will Not Branch
+000A8
408099fE *BNE.S

_DeQueue+000CA

; 40809A20

|6620
blah
40809A00
blah
blah

; blahhhh

|uggg

The next instruction to be executed is A8 hexadicimal byes from the beginning
of the DeQueue trap. It is located at address 408099FE in memory. It's
mnemonic is BNE.S. It's parameters are _DeQueue+000CA. This instruction will
"Branch if Not Equal". If it branches, it will branch to address 40809A20.
It's machine language equivalent is 6620.

In this example, the instruction is not going to branch. If you want to see
what happens if it branches, type "pc=40809a20". The pc is a special address
register that contains the address of the next instruction to be executed.
This command changes the pc to the address that it would be if the instruction
had branched (40809A20). If this instruction *was* going to branch and you
wanted to see what would happen if it didn't, you could use either
"pc=40809a00" or "pc=pc+2". It's "pc=pc+2" because the given BNE instruction
takes two bytes in memory. This can be seen by looking at the machine
language instruction 6620. A byte is two hexadecimal digits, so 66 20 is two
bytes. If the machine language had been 6600 ff9a, you would use pc=pc+4.

The various branch instructions are the 'big boys' of program cracking. If a
program does something you don't like, like displaying a "Register Me,
Fucker!" screen or pausing before quitting, changing how a branch executes
will almost always override the offending behavior. Again, FINDING THE
CORRECT BRANCH STATEMENT IS THE TOUGH PART!!!!

CMP Instruction
There is also a compare instruction. It's mnemonic is CMP. It will
(suprise!) compare two values and set the status register's (SR) bits
according to the result of the comparison. It is used to set stuff up for a
conditional branch statement. It's form is cmp.b, cmp.w, or cmp.l, plus two
parameters. The .b, .w, or .l corresponds to compare a byte, a word, or a
long. A byte is two hexadecimal digits, a word is four, and a long is eight.
The two parameters are the things to be compared. These can be numbers,
addresses, the contents of addresses in memory, or a whole ton of other
things. The compare instruction will almost always be followed by a
conditional branch of the form Bcc (you just read about 'em unless you're
skipping around like a moron).

TST Instruction
There is a similar assembly language instruction that compares a paramter to
zero. This is the TST (TeST) instruction. It's form is TST.B, TST.W, TST.L,
plus one parameter. See the compare instruction for an explanation of
the .B, .W, and .L part. Again, this is almost always followed by a
conditional branch of the form Bcc.

JSR and BSR Instructions
Assembly language provides a way for a program to use the same bit of code in
multiple places. Code can jump to the repeated part, execute it, and then
return. This is done with the JSR (Jump to SubRoutine) instruction and the
BSR (Branch to SubRoutine) instruction. For our purposes, these instructions
are the same. Note that BSR is *not* a conditional branch. All of the
following info about the JSR instruction also applies to the BSR instruction.

The JSR instruction will branch to a subroutine, execute the subroutine, then
return to the instruction after the JSR. It's syntax is JSR <address of the
subroutine>. If you're lucky, in MacsBug the address may be replaced by the
name of the subroutine, instead of being something cryptic. Unfortunately,
this doesn't always happen.

RTS Instruction
The RTS (ReTurn from Subroutine) will return program execution to the
instruction following the JSR or BSR that called the subroutine in which the
RTS instruction is found. It takes no parameters, and is always the last
instruction in a subroutine. Since my symantecs suck, here's a sort of
flowchartie type thing on how this works.

program is executing Routine A

a JSR or BSR instruction is executed with a parameter of Routine B - the
instruction after this one in memory is Instruction A

program is now executing Routine B

an RTS instruction is found

program execution continues in Routine A at Instruction A

MOVE Instruction
The MOVE instruction moves something from one address in memory to another.
It's form is MOVE.B, MOVE.W, or MOVE.L, plus two parameters. This instruction
is commonly used to make a copy of something, or to pop stuff onto or off of
the stack before or after calling a subroutine. Most subroutines need some
sort of data to work with, so the routine calling it needs to be able to

communicate this data to the subroutine. It can do this by pushing stuff onto
a stack, where a stack is essentially just what it sounds like. The stack can
be viewed at the top left of the MacsBug screen. The address register A7
always points to the bottom of the stack. The weird thing about this stack is
that you don't push things onto the top of it. The top is fixed, and things
are pushed onto the bottom. So, the stack grows downwards. Often,
subroutines return some sort of data on the stack. After the subroutine has
executed, this data can then be popped off of the stack for use by the calling
routine. Here's an example of an assembly language program passing three
parameters (Parm1 - longword, Parm2 - word, and Parm3 - byte) to a subroutine
called IAmASubroutine, then copying the result (which is a byte) into a
variable called Result. This is meant to be illustrative; in MacsBug, you
won't see names like these, only weird looking stuff.

move.l
Parm1, -(A7)

move.w
Parm2, -(A7)

move.b
Parm3, -(A7)

jsr

IAmASubroutine

move.b
(A7)+, Result

All you really need to know is that -(A7) pops something onto the stack, while
(A7)+ pulls something back off.

As an aside, if the second parameter of the MOVE instruction is a data
register, the move instruction will also set the Status Register's (SR) bits
so that a compare instruction is not necessary.

A common use of this in the Registration Code Example is passing the serial
number you had typed to a subroutine that checks it. The subroutine then
returns a "yes or no" byte. This is then checked. Here's what this would
look like:

move.l
<Address holding your registration code>, -(A7)

move.l
<some other type of info to check it against>, -(A7)

jsr

CheckItOut

move.b
(A7)+, D0

bne

ItsGood

ItsNotGood here

This pops my registration code onto the stack, pops something else onto the
stack, calls the CheckItOut subroutine, moves the result into data register 0,
then branches only if the result is not zero.

NOP Instruction
If you want an instruction that doesn't do anything except waste space (and
you actually may), you can use the NOP (No OPeration) instruction.

More On Using MacsBug

The 's' and the 'so' MacsBug Commands
Often, a registration routine will call the ModalDialog trap to find out what
the user's doing. When the user hits ok, it will call a subroutine to
determine whether the code is valid, and the subroutine will return a "yes or
no" value. In MacsBug, you can step through instructions to see what's going
on. You have two choices. You can either step through every instruction,
which will be really tedious unless you are pretty close to what you're
looking for, or you can step through only the instructions in the current
routine, stepping over toolbox traps and subroutines. This is good for
getting a general understanding of what the program is doing. To step through
individual instructions, use the 's' (step) command. To step over subroutines
and traps, use the 'so' (step over) command. Hitting return will repeat the
last command executed, so you don't have to type 'so' over and over. You can
also hit escape to see the Smac screen; hit escape again to get back to
MacsBug. After a JSR has been executed, the subroutine will return to the
original routine with an rts instruction (return from subroutine).

When using the 's' command, MacsBug will execute the current instruction and
allow the user to interact with MacsBug immediately afterwards. If the
current instruction is a JSR or BSR, 's' will execute the JSR or BSR
instruction and then show you the first instruction in the subroutine called

by the JSR or BSR. This also applies to toolbox traps. The 's' command will
show the MacsBug user every single instruction the computer ever executes
('kay, if you're a guru reading this, you don't get to see interrupts, but who
cares?).

When using the 'so' command, MacsBug will execute the current instruction
and everything associated with it, then return control to the user
afterwards. If the current instruction is a JSR or a BSR, 'so' will execute
the JSR or BSR, execute the subroutine called by the JSR or BSR, execute the
RTS at the end of the subroutine, then return control to the MacsBug user with
the current instruction set to the one that followed the JSR or BSR.
Otherwise, 's' and 'so' are equivalent.

The 'br' and 'brc' and 'gt' commands
Lets say you want your program to run until it gets to a certain place and
then drop into MacsBug. You can set a breakpoint for some address in memory.
When the program counter (PC) is equal to the address of one of your
breakpoints, you will drop into MacsBug. This is useful if you've eliminated
some section of your program as being irrelevant to your crack and you don't
want to have to step through it. To set a breakpoint, the syntax is br <the
address at which to break>. Keep in mind that you can use expressions here,
like "br pc+4", which will break at four bytes beyond the current instruction.

When using the 'br' (BReak point) command, execution will *always* stop when
the pc is equal to your breakpoint. If you want clear a breakpoint, you can
use the 'brc' (BReak point Clear) command. This can be brc <the address> to
clear a particular breakpoint or just brc to clear 'em all.

If you want to break at some location only one time, you can use the 'gt' (Go
Till) command. This is exactly equivalent to setting a breakpoint, running
till you get to it, then clearing it.

The 'g' Command
Typing 'g' will continue execution normally until a breakpoint is encountered.

Displaying and Setting Memory
You can look at or set the contents of memory. To look at 16 bytes of memory,
use dm <the address> (dm stands for display memory). To look at only a byte,
word, or long, use db, dw, or dl, respectively. You can set a byte, word, or
long by using sb <the address> <the byte>, sw or sl, respectively (sb stands
for set byte). This can be used to see whether the registration code you
typed is inside of an address being manipulated by the program. It can also
be used to change stuff on the fly.

Other MacsBug Commands
Finally, you can try to do an emergency exit from the program with es (Exit to
Shell), you can restart the computer with rs (ReStart), or reboot (with the
memory check and all the stuff that makes it take 14 years) with rb (ReBoot).
You'll probably crash the computer quite a few times trying to krack programs,

so these commands are good ones to know. In fact, even if you don't use
MacsBug for anything else, it's worth having just for these commands. The
'es' command, for example, is more robust than doing a force quit from a
program with cmd-opt esc, and using rs is quicker than manually restarting the
computer. These commands are not strictly relevent to kracking programs, but
they're pretty damn good to know.

Number Conversion
MacsBug will translate hex to decimal for you, just type in a hexadecimal
number and you'll get the decimal prefixed with a #. For example, if I type
524C (a hex number), I get

524c = $0000524C
#21068
#21068
'··RL'
(between 20k and 21k)

This tells me that the expression I typed in (524C) is equal to 524C hex,
21068 unsigned decimal, 21068 signed decimal, '··RL' ascii and is between 20
and 21K in memory size. You can also type simple equations and get the same
type of output.

If you want to convert a decimal number to hex, you can type the decimal
number preceeded by a '#'. For example, typing '#10' will tell me that 10
decimal is equal to 0000000A hex.

Doing The Krack

Allrighty, enough preamble crap. Here's the basic strategy revisited. You
will fill in the text fields in the registration window with whatever you
want, set an a-trap break for ModalDialog, and step through the code till you
find where it says "yes or no" to the good registration question. Here's how
I would do this, you can do it however ya want.

Type everything you want in the text fields except the very last character you
intend to type.

Drop into MacsBug (I use cmd-power key to do this) and type "atb ModalDialog"
to set an a-trap break on the ModalDialog trap. The next time ModalDialog is
encountered, you will drop into MacsBug. You don't type all the characters

because when you originally drop into MacsBug, you will almost certainly
already be inside the ModalDialog trap, and you want to be outside of it.

Type 'g' to continue execution normally and type the last character into the
program's text field. At this point, you should drop into MacsBug, and the
next instruction should be ModalDialog. If it's not or you don't drop into
MacsBug, you've got to try a different toolbox trap, maybe DialogSelect.

Type 'so' to step over the modal dialog trap. This will let you do one thing
(like click the OK button or hit return) and then will drop you back into
MacsBug at the instruction following ModalDialog.

Click the ok button, and you're back in MacsBug. You'll use 'so' to step over
instructions looking for that "yes or no" check. You may try using 'dm' to
display the memory that the instructions are dealing with. For example, if an
instruction uses -$0016(A0), you could try 'dm a0-16' to see the memory. If
the first eight bytes of the memory displayed by 'dm' look like an address,
you could try doing a 'dm' on the address in case it uses double indirection.
Somewhere along the line, you should see whatever you typed in as your serial
number. This'll mean you're on the right track. You can also look for either
the GetDialogItem or GetDialogItemText toolbox traps. These get information
from a window (such as the serial number you typed). Anyway, if you persevere
and think about what you're seeing, eventually you may find something that
looks like either the example given in the explanation of the MOVE
instruction, or like the following

TST.B
D0
Bcc.s
<somewhere>

where <somewhere> is the location that will be branched to. <Somewhere> will
not be surrounded by <>, it may look like 'CODE 0001'+002A.

This is testing a yes or no. D0 is a data register, it could be D(some other
number). If it branches (see the branch instruction), try not branching and
then type g to continue normal execution and vice versa. If you're lucky,
you'll get the lovely screen that says "Thanks for registering." If you play
around for more than 200 hours and haven't found it, guess you'll have to use
a different approach.

Another way to find the all-powerful "yes or no" check is to step over (so)
instructions until you see the "Wrong Code, Bub" message. Make a note of the
address at which this happened. Was there a conditional branch not too long
before? That may be your branch. If it happens inside of a subroutine (i.e.,
the last instruction you stepped over was JSR or BSR), the check *may* happen
inside the subroutine. However, the subroutine may just be the
DisplayAnnoyingWrongCode subroutine. You can 'so' until you get to the
subroutine, then 's' once to get inside it, then continue to 'so' till you get
the "Hey, Dipshit! Wrong Code!" message. Repeat as necessary, do not stir
until boiling.

The "Hey, SuckBag - You're Trying To Krack Me" message will usually be
executed by the Alert toolbox trap. If you're using the above method and end
up at the Alert trap, you've missed the check.

Allrighty, You've Kracked It, Now What?

Changing The Program
(gawd, nice titles, huh...)

Have I Kracked It?
If you have found the branch instruction that allows you to get a valid
registration and continued execution results in "Hey, Thanks For Registering,"
you have kracked the program. If MacsBug is listing offsets next to the
conditional branch you found, make a note of the routine and the offset (see
the explanation of the MacsBug display). If not, write down as much machine
language from that point on as you can (I usually write down about 20 bytes).
If the program is now kracked, you can just say to hell with it and leave it
at that. However, if you want to krack it for someone else, you'll have to
actually change the program's code.

Finding The Place To Change
To change code, you'll use ResEdit and the CodeEditor. You'll find the branch
instruction that determines "yes or no" and change it so it either always
branches or never branches, depending on what kracks the code. So, into
ResEdit you go, and open up the resource corresponding to where the branch
instruction is. If you can't figure out how to open files in ResEdit, this
tutorial may be more applicable to the guy in the next cell over from you.
For example, if MacsBug told you that the branch instruction looked like this:

'CODE 000A 29DE TCL Critical'

; Will Branch
+02B36
05E4B886
*BEQ.S

'CODE 000A 29…tical'+02B54
; 05E4B8A4

|671C

